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ABSTRACT: Temperature and humidity profiles in the lowest 3 km of the atmosphere provide crucial information in

determining the precipitation type, which aids forecasters in relaying winter-weather risks. In response to the challenges

associated with forecasting mixed-phase environments, this study employs uncrewed aerial vehicles (UAVs) to explore the

efficacy of high-resolution temporal and vertical measurements in winter-weather environments. On 19 February 2019,

boundary layer measurements of an Oklahomawinter stormwere collected by a UAV and radiosondes. UAV observations

show a pronounced surface-based subfreezing layer that corresponds to observed ice pellets at the surface. This is in contrast

to the High-Resolution Rapid Refresh (HRRR)model analyses, which show a subfreezing layer near the surface that is 38C
warmer than both the UAV and radiosonde observations. Using a spectral-bin-microphysics algorithm designed to provide

hydrometeor-phase diagnosis throughout the vertical column, it was found that UAV measurements can improve dis-

crimination between hydrometer types in environments near 08C. A numerical-modeling study of the same winter-weather

event illustrates the potential benefit of vertically sampling a mixed-phase environment at multiple mesonet sites and

highlights future scientific and operational questions to be addressed by the UAV community.
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1. Introduction

In the southern Great Plains (SGP; Oklahoma and Texas),

winter weather can have large societal and economic impacts

due to heavy ice loading, power outages, travel disruptions, and

low predictability in precipitation-type forecasts (Changnon

2003; Ralph et al. 2005; Call 2010). Despite the fact that other

regions of the United States have more frequent winter

storms, disaster declarations and monetary federal aid for

winter storms is typically highest in the SGP (Changnon 2003;

Changnon and Karl 2003; Changnon et al. 2006; Grout et al.

2012), with nearly 50% of all ice storms and 30% of all blizzards

resulting in a disaster declaration in Oklahoma (Grout et al.

2012). Meteorologically, this is because SGP ice storms are

typically associated with long-duration (.12h) icing and abun-

dant moisture (Rauber et al. 2001; Changnon 2003), leaving this

geographic region at increased risk for high-impact ice storms.

It has been shown that mesoscale processes and boundary

layer characteristics are extremely important as they can alter

the precipitation type (Thériault et al. 2010; Reeves et al. 2014;

Stewart et al. 2015). For example, Thériault et al. (2010) showed
that perturbations in the vertical profile as small as 0.58C can

result in a different precipitation type being observed at the

surface. In addition to vertical variability, Reeves (2016) points

out that horizontal variability in precipitation type found in

nature can occur on subgrid scales for high-resolution con-

vection-allowing models. With respect to temporal resolution,

most ice pellet and freezing rain events typically have durations

less than half an hour (Reeves 2016), suggesting that once-

hourly analyses are inadequate to capture the actual evolution

of the surface hydrometeor phase. This variability leads to

complex situations in which discriminating hydrometeor type

becomes one of the leading problems for winter-weather

prediction.

Despite advancements in numerical weather prediction and

precipitation-type algorithm development, forecasting accu-

racy is still a great challenge in the SGP region (Ikeda et al.

2017; McCray et al. 2019). Previous studies have utilized

ground-based and remote-sensed observations synthesized

with NWPmodels, crewed aircraft, and radiosondes to gain an

understanding of the evolution of the atmosphere. However,

studies suggest that despite the current observational network,

the lower levels of the atmosphere (specifically the PBL), are

not properly sampled, potentially leaving out important de-

tails that could improve our scientific understanding of winter

weather and forecasting ability (NRC 2009; Moore 2018;

Chilson et al. 2019).

Currently, radiosondes are the primary source through

which the meteorological community obtains high-resolution

PBL measurements. However, there are a few caveats associ-

ated with radiosonde measurements. Because balloons drift

in the wind, these measurements are not true vertical profiles

and, hence, may not sample the path taken by hydrometeors.

When dealing with winter-weather environments involving

high horizontal variability, this amount of drift may lead to

disagreements between the diagnosed precipitation phase and

what is actually observed. Additionally, measuring at high

temporal frequencies can be very costly as the instrumentation

is typically not recoverable and each launch usually requires a

dedicated workforce. The current radiosonde network density

is not always suitable to represent the horizontal variability

associated with mixed-phase winter weather discussed in

Reeves et al. (2014) and Reeves (2016).Corresponding author: David L. Boren, daniel.tripp@noaa.gov
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Several researchers have begun implementing uncrewed

aerial vehicles (UAVs) as a cost-efficient and highly versatile

solution to filling data gaps in the PBL (Reuder et al. 2008;

Elston et al. 2011; Houston et al. 2012; Cassano et al. 2016; de

Boer et al. 2016; Koch et al. 2018; Jacob et al. 2018; Greene

et al. 2018; Moore 2018; Chilson et al. 2019; Greene et al. 2019;

Bell et al. 2020; de Boer et al. 2020; Segales et al. 2020; Pillar-

Little et al. 2021). The emerging technology of UAVs has

become a reliable platform for measuring state variables at fine

scales in the atmosphere and is in the beginning stages of being

implemented into a statewide 3Dmesonet in Oklahoma (Chilson

et al. 2019). Warm-season studies of UAVs has been the primary

focus in the last decade. Less effort has been devoted to assessing

UAVutility for the cool season, with previous studies focusing on

measuring Artic and Antarctic environments and not necessarily

during active precipitation (Curry et al. 2004; Inoue et al. 2008;

Cassano et al. 2016; de Boer et al. 2018).

This study employs UAVs as a new observational tool to

provide insight into winter-weather processes in an Oklahoma

mixed-phase environment. UAV vertical profiles of active

winter precipitation that were collected in February 2019 are

compared to the local observational network, as well as model

analyses and precipitation-type algorithm output. This study

examines the impact of high-resolution observations for one

case study and is intended as a ‘‘proof of concept’’ for future

studies to build upon. Suggestions for UAV applications in

winter weather and insights on how this new technology can be

utilized alongside the current observational network as a 3D

mesonet are presented herein.

The UAV discussion in this paper is organized into three

sections. Section 2 outlines all of the observational and model

data utilized in this study. Section 3 utilizes low-level UAV

vertical profiles of temperature and relative humidity along

with radiosondes to diagnose precipitation type at a point lo-

cation in central Oklahoma. Section 4 explores how a network

ofUAVs could sample amixed-phase environment at different

point locations within the state and also introduces important

scientific and operational questions to address in future studies.

2. Data and methods

a. UAVs

The CopterSonde 2.5 rotary-wing UAV developed by the

Center for Autonomous Sensing and Sampling (CASS) at the

University of Oklahoma (OU) is utilized for gathering atmo-

spheric data in winter weather. The sensor payload is housed

inside a custom 3Dprinted shell on the front of the quadcopter.

A fan draws air inside an L-shaped duct and across the sensors

to ensure proper sampling and to protect the sensors from solar

radiation. The technical specifications and details regarding

atmospheric measurement integrity can be found in other lit-

erature (Greene et al. 2018; Barbieri et al. 2019; Greene et al.

2019; Bell et al. 2020; Segales et al. 2020) and in Table 1. In

general, previous studies conclude that the CopterSonde per-

forms well when compared to other in situ measurements

(temperature and relative humidity), primarily because of sun

shielding and appropriate airflow around sensors.

Because all previous testing was conducted in fair weather

conditions, sensor integrity during icing conditions has not

been characterized for this platform and is one important ca-

veat to note for this experimental dataset. Waugh and Schuur

(2018) found that icing on radiosondes can impact sensor re-

sponse time and produce incorrect measurements. During the

event studied herein, there was evidence of icing on the rotors

and the outer shell. Between flights the UAV and sensor

package were inspected for icing and dried off to avoid sensor

wetting. No in-flight deicing measures were implemented on

this platform and the authors note the importance of icing

mitigation for flight performance and sensor integrity. To

mitigate potential icing contamination, data were manually

quality controlled by identifying any nonphysical signature or

strong bias in relation to other observations in the verti-

cal profile.

b. Radiosondes

iMet-4 radiosondes were utilized during this field experi-

ment to capture the vertical profile beyond the flight ceiling of

the UAV. Four radiosondes were launched; however, due to

evidence of sensor icing in the last two launches, only surface

observations are obtained from the final two soundings for this

study. Each of the radiosondes are displaced at least 10min in

time fromUAV profiles to ensure the platforms did not collide

during flight. Technical specifications of sensor integrity are

found in Table 1.

c. Oklahoma Mesonet

The Oklahoma Mesonet is composed of a network of 120

stations that relay weather and soil observations at a high

temporal frequency (Brock et al. 1995; McPherson et al. 2007).

TABLE 1. Technical specifications of weather sensors used in this experiment. Radiosonde metrics listed are manufacturer

specifications. UAV metrics were calibrated/validated by CASS on the full integrated UAV system.

UAV Radiosonde iMet-4

Temperature iMet-XF PT-100 Humidity HYT-271 Temperature Humidity

Sensing element Bead thermistor Capacitor Bead thermistor Capacitive polymer

Range From 150 to 2908C 0%–100% From 160 to 2908C 0%–100%

Response time #2.7 sa #4.5 sa #1 s (at 5m s21) 5.2 s (at 58C)
Resolution 0.018C 0.1% 0.018C 0.1%

Sampling rate 20Hz 20Hz 1Hz 1Hz

aAt 12m s21 from onboard fan and T 5 08C
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There is at least one station in every Oklahoma county mea-

suring temperature, relative humidity, wind, solar radiation,

precipitation, and pressure. Postprocessed data are collected

from the Oklahoma Mesonet’s archive in 30-min intervals

and a cubic interpolation is employed in between stations for

analysis of the surface temperature for the winter-weather

event studied herein.

d. Other surface observations

Additional surface observations are obtained from the

Automated Surface Observing System (ASOS; National

Weather Service 1998), AutomatedWeatherObserving System

(AWOS), andMeteorological Phenomena IdentificationNear the

Ground (mPing; Elmore et al. 2014). ASOS and AWOS directly

observe precipitation type at given locations and report subhourly

data. mPing observations are crowd-sourced observations of pre-

cipitation type collected by the general public. Details regarding

their accuracy and usage can be found in other studies (Reeves

et al. 2014; Elmore et al. 2015;Reeves 2016; Burg et al. 2017; Ikeda

et al. 2017).

e. High-Resolution Rapid Refresh model

The High-Resolution Rapid Refresh (HRRR) model is a

convection-allowing model with a 3-km grid as well as 3-km

radar assimilation (Benjamin et al. 2016; Alexander et al.

2017). The HRRR assimilates data from several observational

networks (mesonet, ASOS, radar, etc.) including the Oklahoma

Mesonet. A backward–forward two-pass digital-filter initiali-

zation process is applied to incorporate microphysics at ini-

tialization (for more details, see Benjamin et al. 2016). The

analysis data used herein are interpolated to pressure coordi-

nates with a vertical spacing of 25 hPa. During the winter event

studied herein, a surface-based subfreezing layer was capped

by a single warm layer (T . 08C) aloft. This paper defines the
elevated warm layer (T. 08C) as the vertical area bounded by

the bottommost and topmost crossings of the 08C isotherm. It

is possible to have multiple crossings of the 08C isotherm,

however, this method captures the depth of all potential

melting layers.

3. Results

a. Mesoscale analysis

On 19 February 2019, OUCASS deployed the CopterSonde

to measure winter precipitation in central Oklahoma. The

Kessler Atmospheric and Ecological Field Station (KAEFS;

see Fig. 1 for location), located in Washington, Oklahoma, is

the base for UAV operations and is a designated OU location

where UAVs can fly above the regular flight ceiling laid out

by a Certificate of Authorization (COA) granted from the

Federal Aviation Administration (FAA). All UAV flights and

radiosonde launches are collocated with the Washington

mesonet tower in this study.

On the morning of 19 February, southerly isentropic lift

inferred from Fig. 1 developed over a cold-frontal surface and

produced precipitation over most of Oklahoma (Figs. 1 and 2).

At 1600 UTC, the composite reflectivity (Fig. 2a) depicts light

precipitation moving into central Oklahoma. However, base

reflectivity scans (0.5–0.75 km AGL; KTLX) indicate no echo,

suggesting subcloud evaporation. This results in cooling near

the surface and an increased thickness of a preexisting surface-

based subfreezing layer (not shown). Precipitation at KAEFS

is first observed at the surface at 1630 UTC (Fig. 2b) as ice

pellets. By 1700 UTC (Fig. 2c), the precipitation type transi-

tions to liquid at KAEFS. In northwest Oklahoma, a snowband

(Fig. 2) produces about 19 cm (7.5 in) of snow in Burlington,

OK (225 km northwest of KAEFS). Trace amounts of winter

precipitation are observed outside of the snowband in areas of

weaker echo indicated in Fig. 2 (not shown).

FIG. 1. The 1600 UTC HRRR analysis of (a) 500- and (b) 850-hPa geopotential heights (solid black; dam), isotherms (dashed blue; K),

and winds [black barbs; kt (1 kt ’ 0.51m s21)]. In this and all subsequent figures, the UAV flight location (KAEFS) is denoted with a

green star.
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To gain an understanding of the horizontal and vertical

structure of the atmosphere surrounding KAEFS, the Oklahoma

Mesonet and the HRRR analyses are utilized. Southerly warm

advection leads to the formation of an elevated warm layer

(T. 08C) throughout the day on 19 February. Figure 3 depicts

the location and thickness of the elevated warm layer along

with surface observations of precipitation type. The 08C
isotherm for the HRRR and the mesonet (Fig. 3) indicates a

southwest/northeast oriented boundary throughout the event.

At 1200 UTC (Fig. 3a), a deep elevated warm layer caps a

surface-based subfreezing layer whose temperature hovers

near 08C. Northwest of the 08C isotherm, the depth of the warm

layer decreases and eventually erodes completely. As precip-

itation forms in central Oklahoma, the surface 08C isotherm

moves to the southeast (Figs. 3b,c) possibly due to latent cooling

associated with melting. This cold-air intrusion creates a tran-

sition zone throughout centralOklahomawith an elevatedwarm

layer that is about 1500m deep. This leads to a favorable envi-

ronment for mixed-phase hydrometeor formation (Figs. 3b,c).

By 2000 UTC (Fig. 3d), surface observations indicate a broad

precipitation shield across the state with some mixed precipita-

tion in central Oklahoma.

The HRRR surface temperature is compared with the

mesonet analysis (Fig. 3). There are some local nuances that

aremarginally different between the two analyses (bias, 28C).
These are consistent with those found in previous investiga-

tions (Ikeda et al. 2017). Additionally, the HRRR does not

fully capture the magnitude of the surface-based refreezing

layer, which is discussed in section 3b. However, the gen-

eral weather pattern and progression captured by the

HRRR of the 19 February case study does agree with the

observations. Figure 4 shows a time–height cross section

of the HRRR vertical temperature profile at KAEFS. As

precipitation moves into KAEFS (1600 UTC), the re-

freezing layer near the surface deepens and cools, and the

melting layer begins to cool as precipitation intensity in-

creases. This pattern has been found by McCray et al.

(2019) to be the common setup for mixed-phase precipita-

tion in the southern plains.

b. KAEFS in situ UAV and radiosonde observations

We now consider the UAV and radiosonde observations

taken during this event. Data collection begins before sunrise

(1312 UTC) at 1200 UTC with light surface winds and cloudy

skies.Winter precipitationmoves in at 1630UTC in the form of

ice pellets (Fig. 2). Precipitation type transitions to rain by

1700 UTC and continues intermittently until data collection

concludes at 2030 UTC. Throughout the entire study period,

the surface temperature is around 08C (618C; as seen in Fig. 5a)

resulting in periods of intermittent freezing rain and rain.

Additionally, the wet-bulb temperature (Tw; Fig. 5b) is sub-

freezing at 1630 UTC but edges close to 08C in subsequent

hours. No icing is observed across the land surface at KAEFS;

however, elevated exposed surfaces and objects (antenna

equipment, cables, tree branches) have small amounts of ice

accretion visible during the study period.

The UAV is programmed to ascend vertically at 3m s21 and

obtain temperature and relative humidity measurements every

second up to amaximum flight ceiling of 1500mAGL. Vertical

profiles are gathered from 1200 to 2000 UTC with a total of

18 flights at 15–30min intervals on average. As flights in active

winter precipitation have never been tested on this aircraft, the

temporal resolution varies throughout the study period as

weather conditions (primarily icing) impact flight performance.

Additionally, the flight ceiling is limited throughout the study

because of icing, high winds, and visibility constraints laid out

by the FAA. Like the UAVs, ascent rates for the radiosondes

FIG. 2. The Multi-Radar Multi-Sensor (Zhang et al. 2016) com-

posite radar reflectivity prior to quality control (to maintain valid

echo; Reeves and Waters 2019) at (a) 1600, (b) 1630, and

(c) 1700 UTC 19 Feb 2019. ASOS/AWOS/mPing precipitation-

type observations from the previous 30min are overlaid in colored

circles as indicated in the legend of (a).
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are also 3m s21 in the PBL and launched (1230, 1630 UTC)

near UAV flight times.

At 1200 UTC, four hours before precipitation begins, ra-

diosonde and UAV measurements indicate a surface-based

refreezing layer around 650m deep (Fig. 6a). The observations

agree within 618C with the HRRR analysis temperature pro-

file in the lower 650m. The largest difference between the

observations and the model occurs in the melting layer aloft

with the radiosonde recording 28C warmer than the HRRR at

800m (Fig. 6b).

By 1630 UTC (Fig. 6c), evaporative cooling is evident in the

lowest kilometer of the atmosphere as the 700m temperature

(approximate height of base reflectivity scans) cools to25.18C
and the surface-based refreezing layer grows up to 1050m in

the radiosonde data. The same degree of cooling is not cap-

tured by the HRRR (Fig. 6d). Both the UAV and radiosonde

are up to 38C colder between 342 and 972m AGL (Fig. 6d).

This cooling of the refreezing layer is sufficient to lead to

the formation of ice pellets, consistent with what previous

investigations have found (Thériault et al. 2010; Reeves et al.

2014; Stewart et al. 2015).

Time–height cross sections of temperature show that both

UAV observations and the HRRR have similar characteristics

from 1200 to 1300 UTC (Figs. 7a,b). As precipitation ap-

proaches (around 1500 UTC), the surface-based refreezing

layer becomes a few degrees colder in the observations

(Fig. 7b) relative to the HRRR (Fig. 7a; also seen in Fig. 6d). A

similar cold pocket develops in the HRRR but is delayed in

time until 1800 UTC (Fig. 7a). Additionally, as precipitation

moves over KAEFS (1600–2000 UTC), Tw (Figs. 7c,d) begins

increasing as the PBL becomes saturated from intermittent

precipitation (also seen at the surface in Fig. 5b).

The UAV and radiosonde observations in Figs. 6 and 7

display complementary evidence of a refreezing layer that is

around 1 km thick, leading to the production of ice pellets at

1630 UTC. The primary characteristic that sets UAVs apart, is

that they are able to capture the evolution of the PBL on much

higher temporal scales than the HRRR or the operational

FIG. 3. The HRRRanalysis of the depth of the elevated warm layer (shaded) and location of the surface 08C isotherm (blue), along with

a manual analysis of the surface 08C isotherm using observations from the OklahomaMesonet (green), at (a) 1200, (b) 1600, (c) 1700, and

(d) 2000 UTC 19 Feb 2019. The UAV flight location (KAEFS) is denoted with a green star. ASOS/AWOS/mPing precipitation-type

observations from the previous hour are overlaid in colored circles as indicated in the legend of (a).
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radiosonde network. Table 2 provides a summary of the

melting-/refreezing-layer thicknesses from each of the differ-

ent datasets. Primarily, the HRRR captures the thicknesses of

the melting and refreezing layers well. The largest discrepancy

is in the temperature of the subcloud layer, wherein theHRRR

is 38Cwarmer than the UAV and radiosonde suggest. This may

be due to inadequate representation of evaporative cooling in

the HRRR, but an exact diagnosis of the cause is outside the

scope of this work. The UAV data illustrates that in situ ob-

servations collected on hourly to subhourly temporal scales,

can add valuable information about the vertical structure of the

atmosphere alongside the radiosonde network in Oklahoma.

c. Impacts on surface precipitation-type

Are the differences between the HRRR and the UAVs

significant enough to affect the diagnosis of hydrometeor

phase? This question is answered by utilizing the spectral-bin

classifier (SBC; Reeves et al. 2016). The SBC is a precipitation-

type algorithm that calculates the liquid-water fraction of hy-

drometeors across a given drop size distribution (DSD) to

determine the surface precipitation type (Reeves et al. 2016).

The algorithm is able to diagnose six different categories of

precipitation (rain, snow, rain–snow mix, freezing rain, ice

pellets, and a freezing rain–ice pellet mix) by analyzing a given

temperature and relative humidity profile.

The SBC is sensitive to the ice-nucleation temperature

(Tice). Reeves et al. (2016) found Tice of 268C to be the most

statistically robust but noted that other thresholds are scien-

tifically valid and may, in fact, be more appropriate in certain

situations. Another study (Thompson et al. 2014) utilized

Tice of 248C. Because of this uncertainty, a range of Tice

(from268 to228C) is employed herein to assess the impacts

of temperature/humidity differences between the UAV,

radiosonde, and HRRR on hydrometeor phase.

Figure 8a shows the vertical Tw profile with the associated

hydrometeor phase for the 1600 UTC HRRR analysis. All

precipitation phase diagrams for the HRRR (Fig. 8a; for Tice

of268 and258C) show complete melting of all bin sizes in the

FIG. 4. The HRRR time–height cross section of temperature at

KAEFS during the 19 Feb 2019 winter-weather case study. Solid

contours denote values above 08C, and dashed contours are values

below 08C.

FIG. 5. Observed/analyzed surface (a) temperature and (b) wet-bulb temperature on 19 Feb

2019; 08C is denoted by a horizontal black line.
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elevated warm layer before they encounter the surface-based

subfreezing layer. This results in a surface classification of freezing

rain/drizzle. One would need to increase Tice to 228C (not

shown)—an unrealistic threshold for ice nucleation—in order

for this profile and algorithm to result in an ice pellet diagnosis.

Figure 8b illustrates the same analysis, but for the

1630 UTC radiosonde launched during ice pellet precipi-

tation. The Tw profile looks similar to the HRRR (Fig. 8a)

except the refreezing layer is colder by 38C (also seen in

Fig. 6d). For Tice of 268C, we see the same surface classifica-

tion as the HRRR: freezing rain/drizzle. However, when Tice is

less than or equal to 258C, the phase diagram illustrates a

shallow layer of supercooled liquid (freezing rain/drizzle)

transitioning to ice pellets around 750m. This results in a

surface classification of ice pellets, which corroborates what is

observed at KAEFS.

Additionally, as shown in Fig. 6, UAVs can provide insight

into the lower-level thermodynamic structure. Figure 8c in-

corporates the 1600 UTC UAV data; however, this profile is

capped by a 750m flight ceiling. Therefore, the rest of the

vertical profile is populated by the 1600 UTCHRRR (Fig. 8a).

The surface classifications for Tice at268C and Tice at258C are

identical to the radiosonde data (Fig. 8b) and depict a shallow

supercooled liquid layer capping a layer with ice pellets. These

data highlight how small differences in the thermodynamic

structure between themodel and the observations on 19 February

impact the surface classification of precipitation type. Figure 8

additionally illustrates the strengths UAVs have in collecting low-

level thermodynamic measurements identical to radiosondes.

However, it is evident that measurements at higher altitudes are

needed to provide enough information for precipitation-type al-

gorithms to produce a meaningful classification.

FIG. 6. KAEFS data collected on 19 Feb 2019. (a) Vertical profiles of temperature (red) and wet-bulb temperature

(blue) from the 1200 UTC HRRR analysis (solid), 1205 UTC UAV flight (dotted), and 1230 UTC radiosonde (dot–

dashed). (b) Vertical profiles of observational temperature (red) and wet-bulb temperature (blue) differences from the

HRRRanalysis at the same observational times as in (a). (c) As in (a), but for the 1600UTCHRRR analysis, 1600UTC

UAV flight, and 1630 UTC radiosonde. (d) As in (b), but for the 1600 UTC UAV flight and 1630 UTC radiosonde.
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4. Future operational and scientific objectives learned
from simulated UAV data

Assessing the efficacy ofUAVs forwinterweather inOklahoma

is logistically challenging for a number of reasons. Mixed-phase

events do not commonly occur in Oklahoma and when they do,

there is no guarantee the weather will be centered on the top of

designated FAA flight locations. Field campaigns and the opera-
tional costs of collecting these types of data are expensive and
require large teams. Because of these costs, it is not feasible to test
different configurations of a UAV network at local mesonet sites.
These constraints restrict the ability to do cross comparisons of
different network configurations that are free from possible influ-
ences from different weather patterns.

FIG. 7. Plots of time (UTC) vs height (m) at KAEFS on 19 Feb 2019. (a) HRRR temperature (8C) as in Fig. 4, but confined to the lowest

900m. Sampling frequency is denotedby the dashed vertical lines. (b)UAV temperature (8C).Vertical profiles are denoted by dashed vertical

lines, with flight ceilingsmarkedwith stars. (c)HRRRwet-bulb temperature (8C). Sampling frequency is denoted by the dashed vertical lines.

(d) As in (b), but for wet-bulb temperature. Solid contours denote values above 08C, and dashed contours are values below 08C.

TABLE 2. Summary of melting- and refreezing-layer thicknesses. The lowest 50m are ignored when defining the refreezing layer.

HRRR melt layer Radiosonde melt layer HRRR refreezing layer Radiosonde refreezing layer UAV refreezing layer

1200 UTC 1462m 651m 645m

1230 UTC 1578m 675m 662m

1600 UTC 1471m 972m .750m

1630 UTC 1497m 1050m .500m

1700 UTC 1109m 1074m .500m

2000 UTC 913m 1560m .520m
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In an effort to overcome these constraints, this section illustrates

how multiple UAVs in a 3D network could sample a winter-

weather environment and highlights operational and scientific

questions that need to be addressed in future work.Amodeling

study is undertaken as a cost-effective way to create synthetic

observations for illustrative purposes. This task can be ac-

complished by any mesoscale model such as the HRRR, but

this study utilizes the Advanced Research version of the

Weather Research and Forecasting (WRF-ARW) Model

(Skamarock et al. 2019) in an effort to simulate subhourly

FIG. 8.Wet-bulb temperature profiles with the associated hydrometeor phase at an ice nucleation temperature of

(left) 268 and (right) 258C for the (a) 1600 UTC HRRR analysis, (b) 1630 UTC radiosonde, and (c) 1600 UTC

HRRR/UAV hybrid profile. The profile in (c) is composed of UAV data in the lower 750m and HRRR data in the

upper levels. Classification abbreviations are as follows: RA5 rain, FZRA5 freezing rain, PL5 ice pellet, FZDZ

5 freezing drizzle, SN 5 snow, or a mixture of these types.
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data similar to a potential UAV sampling frequency. Synthetic

UAV data generated in this study are intended as a proof-of-

concept demonstration to provide a foundation for future efforts

seeking to comprehensively pin down the efficacy of a 3DUAV

network.

The WRF simulation is conducted for the same event

(19 February 2019) discussed in section 3 and initialized with

the HRRR analysis data. Two domains are utilized with a

horizontal grid spacing of 3 and 1 km, respectively (as outlined

in Fig. 9 and Table 3). All parameterizations closely mirror

those utilized in the HRRR. The results of the simulation are

comparable to the differences pointed out in section 3 between

the observations and the HRRR (not shown). Additional de-

tails regarding the simulation parameterizations can be found

in Table 3.

The 3D mesonet concept discussed in Chilson et al. (2019)

proposes the implementation of a semiautonomous UAV

network stationed at existing mesonet sites. To further explore

what could be observed if such a network were operational

during a mixed-phase environment, locations A, B, C, and D

(actual mesonet sites) in Fig. 10 are analyzed herein.

WRF analysis

The SBC precipitation-type algorithm is run across theWRF

domain and highlights a transition zone extending through

central Oklahoma (Fig. 10). Looking through both time and

space, Figs. 10a–c shows that mesoscale variability is captured

in this simulation and represents a mixed-phase environment

as observed in nature. From a UAV perspective, there are

several fine-scale features in Fig. 10 that could have notably

different thermodynamic profiles.

As an exercise in extracting synthetic data and assuming

perfect instrumentation without error or hysteresis, UAV

profiles of Tw at locations A–D are provided in Fig. 11. A 15-min

sampling frequency is denoted by dashed vertical lines to simulate

data collection at this frequency. Location A (Fig. 11a) is the

northernmost station on the coldest side of the transition zone. A

shallow and weak elevated warm layer (Fig. 11a) results in partial

melting of only the smallest hydrometeors. The majority of

hydrometeors remain frozen through this layer, leading to the

snow classification noted in Fig. 10. However, location B

(Fig. 11b) favors mixed-phase precipitation from 1800 to

1945 UTC due to melting at 2 km with Tw primarily warmer

thanTice in the refreezing layer. Location C (Fig. 11c) is similar

to location B, except there is more evidence of melting, thus

trending toward more liquid forms of precipitation instead of

mixes at the surface.

Location D (Fig. 11d) is more characteristic of a liquid-

precipitation environment due to its warm melting layer and a

refreezing layer primarily warmer than Tice from 1715 UTC

onward. One unique characteristic of location D highlighted in

Fig. 10b is the rapid transition to snow at 1900 UTC. One hy-

pothesis for this rapid cooling is that precipitation loading cools

the environment as well as adds moisture resulting in Tw de-

creasing by 48C (Fig. 11d). Thus, the surface classification

transitions from rain to a rain–snow mix in 30min.

FIG. 9. Domain layout for the numerical simulation experiment.

The horizontal grid spacings for domains 1 (black outline) and 2

(blue outline) are 3 and 1 km.

TABLE 3. Design ofWRF-ARWnumerical weather prediction system for a real data case on 19 Feb 2019. Domain locations [domains 1

(d01) and 2 (d02)] are laid out in Fig. 9.

Model settings

Horizontal grid spacing d01 5 3 km; d02 5 1 km

Vertical levels 80

Initial conditions 3-km HRRR

Boundary conditions 3-km HRRR

Start time 0000 UTC

End time 2100 UTC

Output frequency d01 5 hourly; d02 5 15min

Physics settings

Cumulus convection None

Boundary layer MYNN2.5-level TKE scheme (Nakanishi andNiino 2006)

Surface layer MYNN surface layer (Nakanishi and Niino 2006)

Microphysics Thompson (Thompson et al. 2008)

Land surface RUC land surface model (Smirnova et al. 2016)

Longwave radiation RRTMG scheme (Iacono et al. 2008)

Shortwave radiation RRTMG scheme (Iacono et al. 2008)

370 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 60

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/10/21 02:20 PM UTC



These observations illustrate what could be captured by a

hypothetical network ofUAVs stationed at local mesonet sites.

Looking through the lens of data assimilation, low-level obser-

vations are not captured on these scales from the operational

radiosonde network. Reeves et al. (2014) points out that

precipitation-type forecasts are more sharply influenced by the

initial conditions of a model as opposed to forecast lead time

suggesting that observations such as this may be beneficial.

However, future observing system simulation experiments

(OSSEs) are needed to explore if a network such as this could

improve high-resolution NWP. It is important to note that a

general survey of Fig. 10 indicates that even if a UAV were

stationed at every mesonet site, there would still possibly be

gaps in capturing the mesoscale variability present in the

simulation. This brings to question how many UAV sites are

necessary to improve winter forecasts if any improvement at

all. Studies involving different UAV network configurations

along fine-scale mesoscale features such as the one presented

in Fig. 10 are encouraged in future work.

This dataset also provides guidance on target flight ceilings

needed to capture useful information. Flights targeted at a 1-km

flight ceiling can capture the magnitude of the refreezing layer,

which could help discriminate ice pellets (Fig. 11). However,

melting-layer data are required to discriminate mixes and all

other forms of precipitation. This case suggests that flights

would need to ascend to 3 km, but clearly this is just one event.

If this exercise were repeated for an entire season or with

similar cases, an accurate concept of operational requirements

could be proofed for future field campaigns. Additionally, fu-

ture modeling studies need to explore these target flight ceil-

ings in context of cloud bases. The FAA requires most UAV

operations to maintain visual line-of-sight (VLOS), which

could greatly impede future UAV winter weather field cam-

paigns with low cloud bases.

Figure 11 depicts what could be collected by a network op-

erating on a 15-min sampling frequency to a 3-km ceiling.

However, this sampling frequency and target flight ceiling

poses a great operational challenge when considering battery

life and UAV ascent rates. This simulation does suggest that at

least a 30-min cadence is useful (Fig. 11d); however, a more

thorough study of the temporal evolution of these systems is

required to make an accurate recommendation. Future OSSEs

and modeling studies need to take these scientific details into

account while also considering the technical and logistical

constraints of battery consumption, UAV ascent rates, and

icing. All of these operational and scientific questions are im-

portant to bear in mind to guide future research efforts and

drive advances in UAV capabilities.

5. Summary and discussion

Resolving winter-weather hydrometeor types in transition

zones requires high spatial and temporal resolution. These

hydrometeor types are sensitive to how much melting or

refreezing occurs in the lowest few kilometers of the atmo-

sphere. Additionally, a perturbation in the vertical profile as

little as 0.58C can alter the precipitation type and thus

presents a daunting task for numerical weather models. In this

study, UAVs and radiosondes are utilized to sample a mixed-

phase winter environment and are compared against the

HRRR 0-h analyses to assess the benefits of high-resolution

observations.

FIG. 10. WRF-simulated surface precipitation type (SBC) of the

19 Feb 2019 Oklahoma winter storm at (a) 1800, (b) 1900, and

(c) 2000 UTC. Oklahoma Mesonet locations are denoted with

black dots. Four mesonet sites (A, B, C, and D) perpendicular to

the transition zone are highlighted for this study.
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UAV and radiosonde measurements agree well and identify

a colder refreezing layer than the HRRR (up to 38C), which
leads to the production of ice pellets. The HRRR analysis of

the event resolves the winter-weather environment well in

terms ofmelting- and refreezing-layer thickness and placement

of the surface 08C isotherm. However, fine-scale thermody-

namic processes are not captured at KAEFS (by the HRRR)

that play an important role in diagnosing the surface precipi-

tation type. Vertical profiles of observed and HRRR wet-bulb

temperature are used as input to a hydrometeor-phase algo-

rithm to evaluate whether the above differences are impor-

tant for precipitation-type diagnosis. Both the radiosonde and

UAV profiles result in a correct diagnosis of ice pellets while

theHRRR profile results in a diagnosis of freezing rain/drizzle.

Such results indicate that collecting observations using a UAV

network can add value for the detection and nowcasting of

mixed-phase winter-weather events.

A WRF modeling study was conducted for illustrative pur-

poses to show hypothetical observations from a UAV network

and to highlight some of the operational and scientific ques-

tions that need to be addressed in future research. When ex-

amining simulated UAV data at four mesonet locations, small

variations in thermodynamic measurements captured by UAVs

across a transition zone show promise in capturing valuable in-

formation that is not observed in the current radiosonde network.

Future OSSEs and modeling studies are needed to understand

what impact these observations could have and what network

configurations have the greatest impact on operational NWP.

Other factors such as flight ceilings, sampling frequency, VLOS

requirements, battery life, and UAV ascent rates are among the

many topics that need to be thoroughly vetted in future UAV

winter-weather research efforts.

This case study represents a small sample of UAV data

collected in winter-weather environments. Further investigation

FIG. 11. Plots of time (UTC) vs height (km) of theWRF-simulated 19 Feb 2019Oklahomawinter storm. Point locations (A, B, C, andD)

are denoted in Fig. 10.Wet-bulb temperature (8C) is given at locations (a) A, (b) B, (c) C, and (d) D. Sampling frequency is denoted by the

dashed vertical lines. Solid contours denote values above 08C, and dashed contours are values below 08C. The 1- and 2-km heights (AGL)

are denoted by horizontal black lines.
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including more case studies needs to be conducted to better

quantify winter-weather conditions that occur in the Oklahoma

Mesonet domain. The authors strongly suggest an extensive study

be conductedon icing and other relatedmeteorological conditions

that could limitUAVflight performance inwinter weather. There

was some evidence of icing on the instrumentation utilized in

this case study. Icing can cause slowed sensor response time and

erroneous measurements, which contaminate observations col-

lected in these environments. Characterization of sensors in icing

conditions and in-flight deicing mitigation is critical to the success

in collecting these measurements.

Moving forward toward an operational network, permis-

sions for beyond visual line-of-sight (BVLOS) will be required

to operate multiple UAVs in a mesoscale network and to

capture important data above cloud base. The FAA has begun

granting BVLOS permissions to industry partners and large

operational teams who provide evidence of superior opera-

tional excellence with proven risk-mitigation systems.Whereas

BVLOS is plausible from an operational standpoint (Chilson

et al. 2019), significant testing of in-cloud measurements needs

to be conducted to ensure accurate measurements can be col-

lected. Additionally, work to create an artificial intelligence

network for meteorological flight conditions is necessary for

this type of an observational network.

This study focused on utilizing UAVs in environments near

08C due to the importance of small PBL temperature changes.

However, cases of extreme winter weather, such as blizzards,

lake-effect snow, or snow squalls were not explored. These

environments are strongly driven by synoptic and convective

processes on varying spatial and temporal scales. Additionally,

wind fields associated with these winter-weather types pose an

extreme challenge for UAV flight performance. Future work

assessing UAV operations in these types of winter weather

systems is necessary moving forward.
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